Not to be confused with Artificial general intelligence.
Generative artificial intelligence (generative AI, GenAI, or GAI) is a subset of artificial intelligence that uses generative models to produce text, images, videos, or other forms of data. These models learn the underlying patterns and structures of their training data and use them to produce new data based on the input, which often comes in the form of natural language prompts.
Improvements in transformer-based deep neural networks, particularly large language models (LLMs), enabled an AI boom of generative AI systems in the early 2020s. These include chatbots such as ChatGPT, Copilot, Gemini, and LLaMA; text-to-image artificial intelligence image generation systems such as Stable Diffusion, Midjourney, and DALL-E; and text-to-video AI generators such as Sora. Companies such as OpenAI, Anthropic, Microsoft, Google, and Baidu as well as numerous smaller firms have developed generative AI models.
Generative AI has uses across a wide range of industries, including software development, healthcare, finance, entertainment, customer service, sales and marketing, art, writing, fashion, and product design. However, concerns have been raised about the potential misuse of generative AI such as cybercrime, the use of fake news or deepfakes to deceive or manipulate people, and the mass replacement of human jobs. Intellectual property law concerns also exist around generative models that are trained on and emulate copyrighted works of art.
Since its inception, researchers in the field have raised philosophical and ethical arguments about the nature of the human mind and the consequences of creating artificial beings with human-like intelligence; these issues have previously been explored by myth, fiction and philosophy since antiquity. The concept of automated art dates back at least to the automata of ancient Greek civilization, where inventors such as Daedalus and Hero of Alexandria were described as having designed machines capable of writing text, generating sounds, and playing music. The tradition of creative automations has flourished throughout history, exemplified by Maillardet's automaton created in the early 1800s. Markov chains have long been used to model natural languages since their development by Russian mathematician Andrey Markov in the early 20th century. Markov published his first paper on the topic in 1906, and analyzed the pattern of vowels and consonants in the novel Eugeny Onegin using Markov chains. Once a Markov chain is learned on a text corpus, it can then be used as a probabilistic text generator.